
Real-time Spatio-Temporal Action Localization in
360 Videos

Bo Chen∗, Ahmed Ali-Eldin†, Prashant Shenoy†, Klara Nahrstedt∗
∗University of Illinois at Urbana-Champaign
†University of Massachusetts Amherst

Abstract—Spatio-temporal action localization of human actions
in a video has been a popular topic over the past few years. It
tries to localize the bounding boxes, the time span and the class
of one action, which summarizes information in the video and
helps humans understand it. Though many approaches have been
proposed to solve this problem, these efforts have only focused on
perspective videos. Unfortunately, perspective videos only cover
a small field-of-view (FOV), which limits the capability of action
localization. In this paper, we develop a comprehensive approach
to real-time spatio-temporal localization that can be used to detect
actions in 360 videos. We create two datasets named UCF-101-
24-360 and JHMDB-21-360 for our evaluation. Our experiments
show that our method consistently outperforms other competing
approaches and achieves a real-time processing speed of 15fps
for 360 videos.

I. INTRODUCTION

Spatio-temporal action localization of human actions in
videos is a challenging task. It involves finding the bounding
boxes belonging to an action, linking bounding boxes across
frames together into action tubes, and predicting the class
of it. Though many researchers have proposed systems to
solve this problem [1]–[3], these systems only work for
perspective cameras, which can only capture a limited field-of-
view (FOV) and causes actions not in the FOV to be missed.
Consider the case of performing action localization to find
suspicious activities in a surveillance video. Missing detection
of suspicious activities due to a limited FOV can cause serious
omissions. To deal with this limitation, we propose to perform
spatio-temporal action localization in 360 videos. The 360
video, constructed by stitching images from multiple cameras
into equi-rectangular frames, captures actions in all directions
in its line-of-sight and overcomes the limited FOV problem of
perspective videos.

However, there are many challenges in performing real-time
spatio-temporal action localization in 360 videos. First, the
objects in the equi-rectangular frame are distorted depending
on their locations in the frame, which makes it difficult for
standard methods like the CNNs to extract image features.
Second, running action localization in 360 videos in real-time
is very computation intensive in a real-life setting where we
do not have powerful GPUs everywhere.

In this paper, we design a real-time action localization
system for 360 videos that addresses the above challenges. Our
approach takes advantage of the speed and accuracy of SSD to
perform frame-level detection. We experimentally show that,
when combined with Feature Pyramid Networks (FPN), SSD

has a better mean average precision (mAP) when compared
to state-of-the-art neural network architectures such as VGG,
SphereNet [4], KTN [5] and Cube Padding [6]. To generate
action tubes from frame-level detection, we adapt the online
tube linking algorithm in [3] tuning it for higher tube linking
speeds. Since there is a discrepancy of the speed of frame-level
detection and tube linking on the same device (the linking
speed is much slower than the detection speed), we proposea
way to split the processing on the edge device and the cloud.

We implement a prototype of our system and evaluate its
efficacy via detailed experimental evaluation. In our eval-
uation, we compare our system with [3], the first work
on online spatio-temporal action localisation for perspective
videos, and variants of our system that are using state-of-the-
art techniques, i.e., SphereNet, Kernel Transformer Networks,
Cube Padding, and MobileNet [7]. By using two datasets
transformed from UCF-101-24 [8] and JHMDB-21 [9], we
demonstrate that the action can be predicted with a good ac-
curacy at an early stage and the prediction accuracy improves
as more frames are observed. We also show that our system
achieves the best mAP among all competing approaches and
real-time performance with a Jetson Nano at the edge and a
RTX 2060 GPU on the cloud.

In summary, this paper makes the following contributions.
• We design a real-time spatio-temporal action localization

system for 360 videos that works in an edge-cloud setting.
• We create two datasets called UCF-101-24-360 and

JHMDB-21-360 for 360 video spatio-temporal action
localization.

• We evaluate our system against baseline systems
that use state-of-the-art techniques on UCF-101-24-360
and JHMDB-21-360, and demonstrate that our system
achieves the best mAP and real-time performance.

In the remainder of this paper, we first review the related
work in Section II. We then describe our system design in
Section III. After that, we evaluate our system in Section IV,
which is followed by our conclusions in Section V.

II. RELATED WORK

A. Neural Network for 360 images

CNNs are widely used to extract features from perspective
images. However, they are not suitable for 360 images since
the image content in the equi-rectangular format are distorted.
Several approaches [4], [5], [10] have been proposed to



mitigate the distortion in 360 images by adapting the neural
network architectures. [6], [11] tries to solve this problem by
using cube map projection, which map the equi-rectangular
frame to the six faces of a cube and then apply standard CNNs
on them. In this paper, we experimentally demonstrate that the
above approaches are not as effective in action localization
as they are in simpler tasks, and our proposed FPN-SSD
architecture consistently outperforms them.

B. Spatio-temporal Action Localization

Spatio-temporal action localization approaches can be cat-
egorized into unsupervised methods [12], [13] and supervised
methods [1], [2]. For unsupervised methods, they do not
assume bounding boxes annotations in videos. [13] exploits
images downloaded from the internet using text-based queries
to localize actions in images. For supervised methods, [1], [2]
perform frame-level action detection based on Region Proposal
Networks (RPN) [14] and faster R-CNN [15]. Unfortunately,
they cannot provide real-time performance as our approach.
For real-time spatio-temporal action localization, [3] is the
first work to address this problem. It exploits the SSD de-
tection framework for frame-level detection and builds action
tubes incrementally. However, their approach only works for
perspective videos and makes a too strong assumption of
computing device. Instead, our approach is for 360 videos and
considers a common edge-cloud setup for action localization.

III. SYSTEM DESIGN

Our system architecture is illustrated in Figure 1. At a high
level, the 360 camera sends 360 images to the edge device via
a USB cable. The edge device performs frame-level detection
and sends the frame-level detection result, i.e., location and
labels of bounding boxes, to the cloud server. The cloud server
performs tube linking based on the frame-level detection result
and produces action tubes.

A. Frame-level Detection

Frame-level detection exploits object detection methods to
find the bounding boxes involved in an action. The most
common approach towards this goal is to use CNNs to predict
the location and the class label of bounding boxes. Therefore,
we follow the SSD architecture in [3] to perform action
localization. However, the feature extractor in [3], VGG16,
does not work well on 360 images and produces low mAPs.

Inspired by [16], which demonstrates that the Feature Pyra-
mid Network (FPN) is a good generic feature extractor, we
replace VGG16 with FPN50 [16], and design a neural network
architecture named FPN-SSD. This new architecture works
quite well and achieves a frame-level mAP of 0.356, which is
significantly better than that of VGG-SSD. To further improve
the performance of FPN-SSD, we consider several state-of-
the-art techniques like SphereNet [4], Kernel Transformer Net-
works (KTN) [5] and Cube Padding [6] to mitigate distortion
in equi-rectangular images. We also test a lightweight version
of FPN-SSD using MobileNet [7]. These models are presented
below.

FPN-SSD-SphNet model replaces the standard CNN in
FPN-SSD with spherical convolution in [4], where convolution
kernels have different sampling positions compared with the
standard CNN.

FPN-SSD-KTN model adds the KTN to the standard CNN
in FPN-SSD, which adjusts the size of convolution kernel
based on the position of kernel on the equi-rectangular frame.

FPN-SSD-Cube model maps the equi-rectangular frame to
six faces of a cube before performing convolution.

FPN-SSD-Mobile model replaces the standard CNN in
FPN-SSD with the MobileNet convolution.

The fmAP result of different variants of our model is pre-
sented in Table I. Our approach has the best fmAP compared
with other neural network architectures we tested.

B. Tube Linking

Tube linking involves grouping bounding boxes in different
frames together into action tubes. It is challenging because
tube linking has to take into account the location change of
bounding boxes and False Positives/False Negatives in the
bounding boxes detection. In our system, we adopt the online
tube generation approach in [3] based on an online Viterbi
algorithm, but uses lower values of the threshold for better
real-time performance.

C. Computation Placement

A critical question is where frame-level detection and tube
linking should be performed. We cannot simply put both of
them on the cloud or the edge due to the discrepancy of speed
as mentioned in the previous section. Specifically, we con-
sider the following three metrics to optimize the computation
placement:

• the bandwidth usage: the size of data that needs to be
transmitted over the Internet per frame,

• the image processing overhead: the maximum number
of frames that can be processed for frame-level detec-
tion/tube linking on edge/cloud per second, and

• localization performance: fmAP of frame-level detection.
There are four placement options: 1) Edge-only: frame-

level detection and tube linking are performed on the edge, 2)
Edge-cloud: frame-level detection is performed on the edge
and the bounding box information is sent to the cloud to
be processed, 3) Cloud-only: frame-level detection and tube
linking are performed on the cloud with raw 360 images sent
from the edge to the cloud, and 4) Cloud-only (W/ c): frame-
level detection and tube linking are performed on the cloud
with compressed 360 images sent from the edge to the cloud.

In Table II, we compare the placement options based on
three metrics we discussed above. For the bandwidth usage,
both edge-only and edge-cloud have a low usage since the size
of information of bounding boxes or action tubes in each frame
is small. For the image processing overhead, the frame-level
detection speed on the edge is 22.7 fps and that on the cloud is
152.8fps, both of which can achieve real-time performance.
Regarding the localization performance, Edge-only, Edge-
cloud, and Cloud-only have the same fmAP of 35.6%, which



Fig. 1: System Architecture
TABLE I: Frame-level mean average precision (fmAP) of different NN architectures

Arch FPN-SSD VGG-SSD FPN-SSD-Mobile FPN-SSD-Cube FPN-SSD-SphNet FPN-SSD-KTN
fmAP(%) 35.6 14.6 0.0148 4.21 6.29 6.27

is higher than that of Cloud-only (W/ c) since there is no
information loss in the input image. As a result, we decide to
adopt the option of Edge-cloud, which has a good performance
on the network usage, processing speed and fmAP.

IV. EVALUATION

Our evaluation focuses on 1) early detection of actions,
2) spatio-temporal localization of actions, and 3) process-
ing speed. According to the fmAP result in Table I, only
VGG-SSD has competitive frame-level detection performance
against our approach. Therefore, we only present results of
our approach and VGG-SSD in this section.

Dataset. Since there are no existing large scale 360 video
datasets that contain annotations of action tubes, we evaluate
our approach on two datasets named UCF-101-24-360 and
JHMDB-21-360 that are converted from UCF-101-24 [8]
and JHMDB-21 [9], two datasets for action localization in
perspective videos using the back-projection method [4].

UCF-101-24-360 has 3194 videos divided into training and
testing sets according to split 1. Each video contains a single
action class out of 24 total classes and there is one or multiple
action instances of the same action class in one video. Every
action comes with spatio-temporal localization annotation, i.e.,
the bounding box location in every frame.

JHMDB-21-360 has 928 videos divided into training and
testing sets according to split 1. Each video contains one action
instance out of the 21 action classes and each action has spatio-
temporal localisation annotations.

Evaluation metrics. For real-time action localization, we
use the mAP (mean average precision) criterion defined in
the PASCAL VOC 2012 competition [17]. Note that the true
positive (TP) in [17] is the bounding box while the TP in our
case is the action tube. In addition to the mAP, we also use
the metric of accuracy, i.e., the total number of TPs divided
by the sum of the total number of TPs and FPs, to evaluate
the correctness of action prediction.

Experimental setup. We use the NVIDIA Jetson Nano,
a low-power edge GPU device, as the edge device and a
Precision Tower 7920 with the RTX 2060 GPU as the cloud
server.

A. Early Action Prediction

In this subsection, we present how our system predicts
the action class of a video when only a portion of video is
observed. Specifically, we have 10 different timestamps along
each video, starting at 10% of the total number of video frames
and with a step size of 10%. Figure 2 presents the accuracy of
our approach and VGG-SSD at each timestamp. Our approach
clearly outperforms VGG-SSD [3] and predicts the action class
with a good accuracy when only a small portion of videos is
observed.

Fig. 2: Early action label prediction results (accuracy %)

B. Spatio-temporal Action Localization

In this subsection, we report the spatio-temporal action
localization result of our system compared with the baselines.
Examples of localized actions (basketball, cliff diving, fencing
and horse riding) are shown in Figure 3.

Simliar to [3], we report the mAP when the STIoU threshold
is set to 0.2, 0.5, 0.75, and the mAP averaged over thresholds
from 0.5 to 0.95 in steps of 0.05.

Results on UCF101-24-360 are reported in Table III. Our
approach achieves an mAP of 0.241 when the STIoU threshold
is 0.2 which is significantly higher than that of VGG-SSD. For
a higher STIoU threshold of 0.5, FPN-SSD achieves an mAP
of 0.149 while that of VGG-SSD is 0.0283. Our approach
outperforms VGG-SSD by a large margin. For other STIoU
thresholds, the mAP of our approach is higher than that of
VGG-SSD in most cases.

Results on JHMDB-21-360 are reported in Table IV. We



TABLE II: Comparing placement options
Option Edge-only Edge-cloud Cloud-only Cloud-only (W/ c)

Bandwidth usage (KB) <1 <1 6441 190.5
Frame-level detection (fps) 22.7 22.7 153.8 153.8

Tube linking (fps) 3.55 48.1 48.1 48.1
Detection performance (%) 35.6 35.6 35.6 12.6

(a) Basketball (b) Cliff Diving

(c) Fencing (d) Horse Riding

Fig. 3: Examples of Frame-level Detection
TABLE III: Spatio-temporal action localisation results (mAP)
on UCF101-24 dataset in split1

IoU threshold δ 0.2 0.5 0.75 0.5:0.95
FPN-SSD 0.241 0.149 0.0584 0.0638
VGG-SSD 0.0526 0.0283 0.108 0.0119

can still find that our approach is better than VGG-SSD for
most STIoU thresholds.

TABLE IV: Spatio-temporal action localisation results (mAP)
on JHMDB-21 dataset in split1

IoU threshold δ 0.2 0.5 0.75 0.5:0.95
FPN-SSD 0.101 0.0733 0.00183 0.0179
VGG-SSD 0.0336 0.0278 0.00498 0.00826

C. Processing Speed
To demonstrate that our system can perform real-time action

localization, we test the speed of our system running in an
edge-cloud setting. For frame-level detection, we measure the
average time spent on detecting bounding boxes of each frame
to be 0.044s. For tube linking, we measure the time spent on
tube linking divided by the number of frames in each tube
to be 0.021s. Thus, the average time spent on each frame is
t = 0.044 + 0.021 = 0.065s, which results in a frame rate of
roughly 15fps.

V. CONCLUSION

We present a framework for real-time action localization in
360 videos. We take advantage of SSD and FPN for detecting
bounding boxes of actions in 360 videos. The processing is
split in an edge-cloud setting based on extensive analysis of
the trade-offs. We compare our approach to state-of-the-art
approaches and show that our approach achieves the best
mAP for most spatio-temporal IoU thresholds. Besides, our
approach achieves real-time performance of roughly 15fps.

ACKNOWLEDGEMENT

This work was partially supported by the US Army Re-
search Laboratory under cooperative agreement W911NF17-

2-0196. The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory or the US government.

REFERENCES

[1] S. Saha, G. Singh, M. Sapienza, P. H. Torr, and F. Cuzzolin, “Deep
learning for detecting multiple space-time action tubes in videos,” arXiv
preprint arXiv:1608.01529, 2016.

[2] X. Peng and C. Schmid, “Multi-region two-stream r-cnn for action
detection,” in European conference on computer vision. Springer, 2016,
pp. 744–759.

[3] G. Singh, S. Saha, M. Sapienza, P. H. Torr, and F. Cuzzolin, “Online
real-time multiple spatiotemporal action localisation and prediction,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 3637–3646.

[4] B. Coors, A. Paul Condurache, and A. Geiger, “Spherenet: Learning
spherical representations for detection and classification in omnidirec-
tional images,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 518–533.

[5] Y.-C. Su and K. Grauman, “Kernel transformer networks for compact
spherical convolution,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 9442–9451.

[6] H.-T. Cheng, C.-H. Chao, J.-D. Dong, H.-K. Wen, T.-L. Liu, and M. Sun,
“Cube padding for weakly-supervised saliency prediction in 360 videos,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 1420–1429.

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[8] K. Soomro, A. R. Zamir, and M. Shah, “A dataset of 101 human action
classes from videos in the wild,” Center for Research in Computer
Vision, vol. 2, 2012.

[9] H. Jhuang, H. Garrote, E. Poggio, T. Serre, and T. Hmdb, “A large video
database for human motion recognition,” in Proc. of IEEE International
Conference on Computer Vision, vol. 4, no. 5, 2011, p. 6.

[10] Z. Zhang, Y. Xu, J. Yu, and S. Gao, “Saliency detection in 360 videos,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 488–503.

[11] R. Monroy, S. Lutz, T. Chalasani, and A. Smolic, “Salnet360: Saliency
maps for omni-directional images with cnn,” Signal Processing: Image
Communication, vol. 69, pp. 26–34, 2018.

[12] M. Sapienza, F. Cuzzolin, and P. H. Torr, “Learning discriminative
space–time action parts from weakly labelled videos,” International
journal of computer vision, vol. 110, no. 1, pp. 30–47, 2014.

[13] W. Sultani and M. Shah, “What if we do not have multiple videos
of the same action?–video action localization using web images,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 1077–1085.

[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[15] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[16] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[17] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results,” http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.


